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Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clin-
ical goals. Typically, the dose distribution is evaluated based on few statistics and dose-volume his-
tograms. Particularly for stereotactic treatments, the spatial dose distribution represents further crite-
ria, e.g., when considering the gradient between subregions of volumes of interest. We have studied15

how to consider the spatial dose distribution using a multi-criteria optimization approach.
Methods: We have extended a step-wise multi-criteria optimization approach to include criteria

with respect to the local dose distribution. Based on a three-dimensional visualization of the dose we
use a software tool allowing interaction with the dose distribution to map objectives with respect to
its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the20

planner decides if and where to relax the shape of the dose distribution.
Results: To demonstrate the potential of spatial multi-criteria optimization, the tool was applied to

a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of
a boost volume are achieved through local relaxations and while maintaining the remaining dose dis-
tribution. For the meningioma, target coverage is improved by compromising low dose conformality25

towards non-critical structures. A comparison of dose-volume histograms illustrates the importance
of spatial information for achieving the trade-offs.

Conclusion: The results show that it is possible to consider the location of conflicting criteria
during treatment planning. Particularly, it is possible to conserve already achieved goals with respect
to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the30

proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

I. INTRODUCTION

Radiation therapy treatment planning naturally involves
trade-offs, e.g., between coverage of the target with the pre-
scribed dose and sparing of surrounding tissue and critical35

structures. When inverse plan optimization is employed, the
various clinical goals are expressed by mathematical terms
included in the objective function of an optimization prob-
lem. One approach to find a trade-off among the conflicting
goals is to allow for user-defined weighting factors reflecting40

the relative importance of each term1–3. However, re-iterating
through the optimization for different importance factor set-
tings can be cumbersome and time consuming. Moreover,
it is often not clear whether the current solution can be im-
proved further. This motivates approaching planning as a45

multi-criteria problem where Pareto-efficient solutions are
identified4–8. By definition these solutions cannot be im-
proved with respect to any one clinical goal without sacrific-
ing at least one other clinical goal. Clearly, the optimal solu-
tion of the planning problem will be Pareto-efficient. Hence,50

planning is reduced to finding the particular Pareto-efficient
solution that represents the most desirable trade-off to the hu-

man planner.

Different methods can be employed to facilitate this search.
One option is to initially approximate the Pareto-frontier and55

to generate a database with Pareto-efficient solutions rep-
resenting different preferences with respect to the different
goals. The human planner can then navigate through the
database and select the most desirable trade-off9–12. Clearly,
storing solutions for small variations with respect to the pref-60

erence of the criteria leads to a large database. In practice
a coarser approximation of the Pareto-frontier may be used,
where intermediate solutions are interpolated during naviga-
tion. However, the search space still grows exponentially with
the number of criteria that is considered, which usually in-65

clude basic dose statistics like minimum, mean, or maximum
dose in the different volumes of interest (VOIs).

Another method is approaching the search by a sequence
of optimization steps with respect to different planning crite-
ria. Hard constraints are imposed on all but one criteria, i.e.,70

the plan quality with respect to these criteria cannot degrade.
The remaining criterion forms the objective function. If a se-
quence of optimization steps is preformed this results in a pri-
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oritization of the first criterion over subsequent criteria13,14.
However, optimization steps can also be run interactively and75

in any order, leading to step-wise multi-criteria optimization
(SMCO)15,16. After each optimization step, the best solution
with respect to the chosen objective is obtained. Any further
improvement requires relaxing at least one of the constraints,
i.e., the human planner decides what trade-off would be desir-80

able. When ultimately optimization steps with respect to all
criteria have been performed, a Pareto-optimal solution has
been found. This approach requires the optimization to be
fast and, for a large number of steps, can take substantial time
to complete.85

In practice, an experienced human planner will often start
with dose bounds that lead to a reasonable first plan. More-
over, after each step the planner gains information on the fea-
sible solutions. Hence, the step-wise exploration of potential
trade-offs will be more directed and cover a smaller subset90

of the Pareto-frontier in the proximity of the initial solution.
Furthermore, the method may be more suitable to consider
complex criteria. We have previously proposed to include
the spatial dose-distribution, which can be a key criteria for
stereotactic treatments with high doses and steep gradients to-95

wards critical structures17–19. For example, with the advent of
improved functional imaging, ’dose painting’ approaches tak-
ing into account tumor foci or nerves have been studied more
intensely20–25. Extending this idea we show how the step-wise
optimization framework can be used to achieve multi-criteria100

control over the spatial dose distribution. First, we present
the underlying optimization model. Second, the rationale for
spatial trade-offs is motivated. Third, we describe our im-
plementation of a tool facilitating multi-criteria planning of
the three-dimensional dose distribution. Finally, we illustrate105

how the method can be used to optimize the spatial trade-off
for exemplary clinical cases.

II. METHODS AND MATERIAL

II.A. The optimization framework

We first show how the SMCO framework extends to cri-110

teria on the spatial dose distribution. As the basis for plan
optimization we adopt the model presented in16, i.e., we solve
a linear programming optimization problem of the following
form

min cTx x+cTŝ ŝ+c
T
š š+c

T
t̂
t̂+cT

ť
ť

s.t. Ax −ŝ −t̂ ≤ bu
Ax +š +ť ≥ bl
x ≤ bw
ŝ ≤ bŝ
š ≤ bš
t̂ ≤ bt̂
ť ≤ bť
1Tx ≤ bd
Mŝ ≤ bâ
Mš ≤ bǎ
x, ŝ, š, t̂, ť ≥ 0

where the matrix A contains the dose deposition coeffi-115

cients for each beam and voxel, x is a vector containing the
non-negative beam weights, cx contains the objective func-
tion coefficients for the beams, bu and bl contain the upper
and lower dose bounds for each voxel, and bw is the maximum
weight per beam. Moreover, the additional slack variables ŝ, š120

control the deviation from the desired bounds per voxel and t̂,
ť control the deviation from the desired bounds per VOI, i.e.,
the latter have as many components as there are VOIs. The
values the slack variables can take are bounded by bŝ, bš, bt̂,
and bť, and their objective function coefficients are denoted125

by cŝ, cš, ct̂, and cť. The term 1Tx yields the total monitor
units (MU), which is bounded by bd. The matrix M denotes
a mapping from voxels to VOI such that the mean deviation
from lower and upper bounds per VOI can be maintained by
bǎ and bâ, respectively.130

Given that the objective function is linear, it is easy to see
that the number of voxels per VOI will lead to an implicit
weighting of the related objective terms. Moreover, the dose
delivered to a voxel does not change linearly, e.g., with its
distance to a beams’s centerline. This is represented in the135

dose deposition coefficient matrix. As illustrated in16, finding
objective coefficients that realize a desired trade-off among
conflicting criteria is therefore not straightforward. Hence, a
key idea of the step-wise approach is to set the objective coef-
ficients in a way that avoids optimization with respect to two140

criteria at the same time. All objective function coefficients
are set to 0, except for those related to the single criterion that
is optimized. The plan quality with respect to all remaining
criteria is maintained by the hard constraints introduced in the
linear program. Relaxing these constraints can result in an im-145

proved objective value, and a sequence of optimization and re-
laxation steps can be performed to search for a Pareto-optimal
solution. For example, after specifying reasonable bounds on
all organs at risk (OARs) a first step would be to optimize
for planning target volume (PTV) coverage. If the resulting150

coverage is not satisfactory, the planner knows that a further
relaxation of at least one OAR bound will be required to in-
crease it further. Otherwise, if coverage is good, it can be
turned into a bound and other criteria like further OAR spar-
ing or reduction of the total MU may be considered in a next155

optimization step. Finally, all optimization steps should be
repeated without any relaxation to establish Pareto-efficiency.

The solution resulting from this step-wise approach is
Pareto-optimal with respect to the planning criteria consid-
ered during the search, which are typically defined based on160

the VOI. Examples include the minimum, mean, or maximum
dose for the PTV, the maximum or mean dose for OARs,
and the coverage and conformality of the dose distribution
with respect to the PTV. Optimization regarding these criteria
is straightforward, as it simply requires setting the objective165

function coefficients for voxels of the VOI under considera-
tion to 1, and all others to 0.

II.B. Controlling the spatial dose distribution

Clearly, choosing the VOI as the level of abstraction is
somewhat arbitrary. The key idea of inverse planning is to170
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Figure 1 An illustration of a trade-off represented by iso-doses. (a) The sce-
nario includes the PTV (gray), two OAR (white), and the two bold iso-dose
lines representing the lower PTV bound and the upper OAR bound, respec-
tively. (b) It would be preferable to modify the iso-dose to the dotted shape,
which requires relaxation of bounds. (c) A possible result of relaxation with
dose-volume constraints. Arrows indicate problematic regions.

compute treatment parameters that fulfill a set of criteria with
respect to the dose distribution. This distribution may be inho-
mogeneous and adapted, e.g., to consider information on the
expected location of the tumor. Recent advances in functional
imaging and the ability of treatment systems to facilitate pre-175

cise intensity modulated dose delivery have led to substantial
interest in dose painting approaches. However, just like in-
verse planning cannot always fulfill all criteria with respect
to the different VOI, it also cannot produce every ’painted’
dose distribution. In fact, the conflicting nature of planning180

again motivates the search for a solution that represents the
best trade-off.

Particularly, understanding the conflict between different
parts of the dose distribution may be hard. Consider the sce-
nario shown in Figure 1a where the gray region denotes the185

PTV, the two white regions above and to the left denote OARs,
and the two bold lines represent two iso-doses. If the outer iso-
dose corresponds to the maximum dose bound for the OAR it
would be preferable to improve the sparing of the OAR by
moving the iso-dose towards the dotted line shown in Figure190

1b. Typically this will not be possible without relaxing some
other constraints. One obvious approach would be to relax
the minimum dose of the PTV and the maximum dose for the
other OAR. To avoid huge changes to the overall dose distri-
bution, a dose-volume constraint (DVC) may be added, i.e.,195

the percentage of the volume subjected to a dose deviating
from the previous bound is limited. Interestingly, this would
still allow for a poor solution as illustrated in Figure 1c, where
the conformality is compromised and the critical iso-dose is
cutting through the OAR, as denoted be the arrows.200

While changing the DVC may improve the result slightly,
there remains a fundamental limitation in this approach. The
dose-volume histogram (DVH) does not contain information
on the spatial location of the regions that are close to the re-
spective dose bounds. Likewise, the DVC does not allow for205

control over where the voxels exceeding the dose bound are
inside the VOI. This is not intuitive for the planner, who may
have a very clear perception where there is room for compro-
mise. Consider Figure 2a, which shows the same scenario.
Again, the goal is to move the outer iso-dose towards the dot-210

Figure 2 Continuing the example from Figure 1 to illustrate local relaxation.
(a) The actually limiting regions on the iso-dose are highlighted. (b) Graphi-
cal visualization of a reasonable relaxation of the iso-dose shape. (c) A sub-
sequent optimization could move the iso-doses as indicated by the dark gray
regions, the desired improvement can be realized only partially, as the con-
straints limit further progress. The trade-off becomes obvious.

ted line. However, now the regions where constraints on the
iso-dose limit the optimization are illustrated (gray and black
dotted parts of the iso-dose lines, as indicated by the arrows).
Continuing the graphical example, we could now relax the
dose bounds by setting the desired iso-doses as shown in Fig-215

ure 2b, where the areas highlighted by arrows would still rep-
resent an acceptable dose distribution. A further attempt at
the initial optimization leads to the result presented in Fig-
ure 2c, where the dark gray regions denote how much the
iso-doses have changed. Clearly, we expect the improvement220

to be smaller than for the scenario in Figure 1c. In fact, the
change of the iso-dose lines after relaxation shows the trade-
off among the planning goals. We could continue to relax
and optimize to explore what other trade-offs are possible,
but at some point we would conclude that one solution rep-225

resents the optimal balance with respect to our clinical goals.
Note that this would not take many iterations, because the con-
straints that limit progress and are thus candidates for relax-
ation would be highlighted.

II.C. Implementation of spatial multi-criteria230

optimization

The typical approach to planning is to contour the patient
anatomy on axial CT-slices and to further discretize the dif-
ferent structures into sets of voxels. Considering that each
voxel is represented by a constraint in the optimization prob-235

lem the vector of dose values can be computed as d = Ax,
i.e., the di is the dose for the i-th voxel vi. These values can
be readily obtained from the solver after each optimization
step. Moreover, it is straightforward to compute the dose for
points outside the contoured volumes of interest by summing240

the dose deposited by all beams. Based on the voxel doses we
can compute and display three-dimensional iso-dose surfaces.

In the step-wise optimization framework we have two types
of interactions at the optimization level: setting the optimiza-
tion goal and relaxing constraints. When interacting with the245

spatial dose distribution, there are two main scenarios, namely
that a set of voxels needs to be inside an iso-dose-surface and
that a set of voxels needs to be outside an iso-dose surface. Ei-
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ther goal can be expressed by an objective function containing
only the voxels under consideration. Progress with respect to250

the objective will be limited by bounds on the dose elsewhere
defined by our hard constraints. To illustrate how close an
iso-dose surface is to a bound, we use a color scheme where
red indicates no slack and blue indicates large slack. Decreas-
ing the bound for lower bound constraints and increasing the255

bound for upper bound constraints adds additional slack and
hence allows the iso-dose to move in the desired direction.
Before a new goal is considered, the bounds of the constraints
are updated to maintain the current dose distribution.

II.C.1. Goal selection260

Consider a set of voxels V and a threshold k such that V
contains all voxels with a dose larger than or equal to k. The
3D surface covering V is the k-iso-dose surface. Let G be the
the set of voxels that should be covered by the k-iso-dose. If
the clinical goal is to cover an additional region with the k-iso-265

dose, the planner will graphically pull the respective surface
in the desired direction. Now let i run over the indicies of
all voxels in G \ V . Then the lower bound bši on each cor-
responding lower bound slack variable ši is set to the differ-
ence between the target dose and the current voxel dose, i.e.,270

bši = k − di. This allows setting the lower bounds for these
voxels to the target dose bli = k and prevents each voxel’s
dose from decreasing. Finally, we set the goal of the opti-
mization as the minimization of the sum of the slack variables
by setting cši = 1 only for the respective voxels. Constraints275

corresponding to all other clinical criteria remain fixed, result-
ing in the simplified linear program

min
∑
i cši ši

s.t. Ax ≤ bu
Ax +š≥ bl
x ≤ bw
ši ≤ bši
x, š ≥ 0

where the remaining slack variables and objective coeffi-
cients are 0, and bǎ and bâ are set to a very large, non binding
value. All other bounds remain fixed and the objective is to280

minimize the deviation from the target dose k over all voxels
in G \ V . We will call this a selective coverage (SCO) step.

In a similar fashion it is possible to push the iso-dose away
from an area, e.g., to spare a structure. Again, the planner
starts looking at the iso-dose surface for the respective target285

dose k and then pushes the dose in the desired direction. We
are now adapting the upper bound slack variables and we let
i run over the indicies of all voxels in V \G. First, the upper
bound bŝi on each corresponding upper bound slack variable
ŝi is set to the difference between the current dose and the290

target dose, i.e., bŝi = di − k. Second, the upper bounds
for these voxels is set to the target dose bui = k, such that
each voxel’s dose cannot increase. Finally, only the objective
coefficients cŝi are set to 1, leading to the following simplified
linear program295

min
∑
i cŝi ŝi

s.t. Ax −ŝ≤ bu
Ax ≥ bl
x ≤ bw
ŝi ≤ bŝi
x, š ≥ 0

where the deviation from the upper bound is minimized for
V \G, the remaining slack variables and objective coefficients
are 0, and bǎ and bâ are set to a very large, non binding value.
This step will be called selective sparing (SSP).

Note that for either step feasibility of the optimization prob-300

lem is maintained. Moreover, all other constraints including
the bound on the total beam weight remain unchanged. To
preserve the shape of the k-iso-dose under consideration, the
bounds bu and bl are updated when another goal is selected.

II.C.2. Constraint relaxation305

The optimization steps are only meaningful if all other con-
straints remain fixed and the trade-off among the planning cri-
teria becomes obvious, i.e., progress with respect to the se-
lected goal will be limited. Generally, we have to consider
two different types of constraints controlling the dose distri-310

bution, namely upper and lower dose bounds. On a more ab-
stract level relaxation means that the planner wants to allow
more dose in a region where the goal is to maintain a maxi-
mum dose, or less dose in a region where the goal is to main-
tain a minimum dose. This corresponds to shifting a lower315

iso-dose surface towards the PTV or a higher iso-dose surface
towards a VOI, compare the example in Figure 2. Before we
consider these two cases in more detail, we note that we can
get the upper and lower dose bounds for each voxel from the
constraints defined in our optimization problem. Similarly to320

the iso-dose surfaces we can also show a three-dimensional
surface encompassing a region with a certain value for the
bounds. Consider a set of voxels L and a threshold k such that
L contains all voxels with a lower bound less than or equal to
k. Then the 3D surface covering L is the k-lower-bound sur-325

face. Likewise, the k-upper-bound surface is the 3D surface
covering the set U of all voxels with an upper bound larger
than or equal to k. To further highlight where the related con-
straints are binding we set the color of the 3D surfaces to the
difference between the dose and the dose bound for voxels on330

the surface, e.g., blue for a large difference and red for zero
difference.

We first consider the case where the planner intends to relax
the lower bound on the PTV, e.g, to allow some region of the
PTV to have a dose below the desired prescription dose. Let335

p be the dose considered by the planner. Then the p-lower-
bound surface illustrates constraints preventing the p-iso-dose
surface from moving into the PTV. Now the planner considers
where to relax the constraints by studying the p-lower-bound
surface and pushing it towards the PTV. Let V and R be the340

sets of voxels covered by the p-lower-bound surface before
and after relaxation, respectively. Then we then need to adjust
the lower bound b′li = bli − ρ with i running over all vox-
els in V \ R and b′li and ρ the new bound and a parameter
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defining the amount of relaxation, respectively. The case for345

the relaxation of an upper bound on a VOI is similar, i.e., the
p-upper-bound surface is pushed towards the VOI and the up-
date of the bounds is b′ui

= bui
+ ρ. Note that if we assume

that the planner considers iso-dose-surfaces running close to
the VOI, the iso-dose and bound surfaces will typically almost350

fall together in the region of interest.
Clearly, multiple relaxations do not impair feasibility and

subsequent re-optimizations with respect to the active goal are
typically fast. The resulting new dose-distribution will only
change within the defined bounds, i.e., primarily in areas se-355

lected for goal and relaxation. Note that changes in other re-
gions are only possible within the specified bounds, e.g., the
dose for an OAR may decrease further.

II.D. Planning workflow and interaction

Based on the outlined goal selection and constraint relax-360

ation the planner can use the tool to explore spatial trade-offs.
Particularly, the planner gains information on where the con-
straints are binding, i.e., the dose distribution is not changing
unless the planner explicitly relaxes some constraints. Relax-
ation will not always result in an improvement with respect365

to the selected goal, e.g., because of other constraints still in
place. However, once the planner has relaxed the dose con-
straints in all regions considered potential trade-offs the tool
will readily show the remaining constraints. If these cannot be
compromised, no further improvement can be expected and370

planning ends, resulting in the following procedure.

1. Decide, whether an area exists where a change in the
dose would correspond to an improvement in the plan
and that has not been considered for optimization with
the current bounds375

If yes, select the area and continue
Else, stop searching and use the current plan

2. Optimize (SCO or SSP step)

3. Study where the dose constraints are binding

4. Decide, whether some of these constraints can be re-380

laxed
If yes, relax and go to (2)
Else, go to (1)

Of course, the decision what constitutes a preferable plan
is upon the planner and there may be different spatial dose385

distributions representing different trade-offs that have simi-
lar value. Note that the planner could backtrack and explore
other solutions by applying SCO, SSP, and relaxation. Fur-
thermore, note that the first step implies that it is necessary
to run all objectives without relaxation to finally establish390

Pareto-efficiency in a lexicographic manner.
In our current implementation the interaction with iso-dose

or bound surfaces is realized by rotating a 3D scene showing
the respective 3D surface. The surface is then shaped using
a spherical ’bumper’ controlled by the mouse, i.e., the mouse395

motion moves the sphere along the surface and pressing a but-
ton locally deforms the surface along the sphere.

II.E. Test data

To demonstrate the potential use of our spatial multi-criteria
planning approach we selected two clinical cases. First, a400

prostate case was chosen as scenario 1, mainly because it is
a prominent clinical scenario and rectum and bladder present
two OARs in direct proximity and to opposite sides of the
PTV. The main goal was balancing sparing of the rectum
against PTV coverage and bladder sparing. For the PTV, we405

considered dose criteria proposed for stereotactic body radi-
ation therapy26. Initially, we set a lower bound of 36.25 Gy
for the PTV and upper bounds of 41.5, 37.0, and 33.0 Gy for
PTV, rectum, and bladder, respectively. Conformality was en-
forced through the use of two shell structures at 5 mm (36.0410

Gy) and 20 mm (20.0 Gy) distance, and the upper bound on
the total monitor units (MU) was set to 50000. After optimiz-
ing for coverage we established whether sparing of the rectal
wall can be improved by relaxing the constraints in certain
regions of PTV and bladder. Additionally, we investigated415

whether shaping a high dose boost region inside the prostate
was feasible with our approach.

Second, a we studied a case with meningioma close to the
optic nerves and the brainstem and treated with single-session
radiosurgery. Scenario 2 started from an initial solution with420

good OAR sparing maintained by a 7.0 Gy upper bound, but
relatively poor PTV coverage at 88.7 % for the prescribed
dose of 18 Gy (70 % iso-dose). Conformality was maintained
by shell structures at 5 mm (10 Gy) and 12 mm (4 Gy) dis-
tance. The goal was to trade-off conformality and OAR spar-425

ing against better PTV coverage.

The optimization problems were set up with a VOI de-
pendent discretization, and an additional coarse grid to rep-
resent the dose distribution for interaction. For scenario 1,
the PTV and coarse interaction grids had an isotropic width430

of 3 mm , for scenario 2 their isotropic width was 1.58
mm. We adopted the CyberKnife beam delivery model with
a set of non-coplanar and non-isocentric circular beams start-
ing at approximately 100 different positions around the pa-
tient. For both scenarios approximately 1600 candidate beams435

were heuristically generated27. Planning results in a subset
of beams having non-zero weight, e.g., ranging between 283
and 337 in the subsequent examples. These beams are inde-
pendently delivered by a robotically positioned beam source.
Note that the optimization will generally result in a large num-440

ber of candidate beams having zero weight, as minimizing the
objective function implies that the most effective set of beams
fulfilling the constraints is chosen. This is particularly clear
when minimizing the total monitor units. All planning was
done with our inhouse planning environment using the Cplex445

solver 12.1 (IBM) on a computer with an Core i7 970 CPU
and 24 GB of RAM running Linux.
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(a) (b) (c)

Figure 3 (a) The subset of voxels of the rectum selected as target (cubes) and
the remaining voxels of the rectum (spheres), and a wire-frame rendering of
the 33 Gy iso-dose surface. The 36 Gy iso-dose surface covering the PTV
voxel (green) before (b) and after (c) PTV lower bound relaxation. The black
arrows indicate where the lower bound for PTV voxels was relaxed, resulting
in more voxels not covered by the 36 Gy iso-dose surface. Note that we
consider the centroid of the spheres representing the voxels in our constraints.

(a) (b)

Figure 4 Axial (a) and sagittal (b) slices showing the 33 Gy and 36.25 Gy
iso-dose lines before (solid) and after (dotted) all relaxation steps. Changes
are limited to the selected region on the rectal wall and to the periphery of the
bladder.

III. RESULTS

III.A. Prostate

III.A.1. Rectal wall sparing450

The initial solution for scenario 1 resulted in a coverage of
99.4 % and a maximum dose to the bladder of 33.0 Gy. To
assess the effect of the optimization on a subvolume we con-
sidered Vα as the percentage of the respective VOI receiving
a dose of more than α Gy. Motivated by the potential toxicity455

of a high rectal wall dose28, we selected an area on the rec-
tal wall facing the prostate for further sparing. The selection
was done by pushing the surface of the 33 Gy iso-dose away
from the rectum and Figure 3a illustrates the actually affected
voxels of the rectum as yellow boxes. Running an SSP step460

to minimize the dose in these voxels only resulted in a 0.1%
drop of V33 for the rectum, i.e., no noticeable reduction could
be achieved without relaxing other bounds.

As a first trade-off we considered relaxing the upper bound
on the bladder, but only where the respective upper bound sur-465

face was limiting. For small regions on the bladder surface
we relaxed the bound from 33.0 to 35.0 Gy. The concur-
rently running optimizations reduced the V33 of the rectum
from 11.1 to 5.5 %, while the maximum dose in the bladder
increased only for the selected subvolume of 2.2 %. The dose470

outside the areas selected for relaxation and the PTV coverage
were maintained by constraints and did not deteriorate.

Since the selected area on the rectal wall is very close to

the PTV, relaxing PTV coverage comprised a natural second
trade-off. Figure 3b shows the 36 Gy iso-dose surface facing475

the rectum and covering the PTV almost in its entirety. Fig-
ure 3c shows that the 36 Gy iso-dose changed only in a very
limited region and only where indicated by the planner. For
the related set of PTV voxels the lower bound was reduced to
34.5 Gy, resulting in further drop of the V33 of the rectum to480

2.3 % at the expense of a 1.5 % drop in PTV coverage.
The local effect of the trade-offs is highlighted by Figures

4a and 4b, which show that the change in the 33.0 and 36.25
Gy iso-doses is limited to the bladder and PTV regions se-
lected for trade-off while the related improvement in sparing485

of the selected region in the rectum is also visible. Figure 5
and Table I summarize key statistics on the dose distributions,
including the PTV coverage (CO). Note that the optimization
times in the table are average values and in case of relaxation
mean the automatic optimization when the bounds have been490

set to the new, relaxed value.

III.A.2. Boost volume coverage

Starting with the result of the previous steps we defined a
boost volume within one of the prostate lobes for which we
defined a target dose of 45.3 Gy, i.e., a dose escalation of495

25%. The desired location of the boost volume was deter-
mined interactively and an SCO step was performed. While
the maximum dose in the PTV increased to 44.25 Gy, none
of the selected voxels reached the desired 45.3 Gy. Clearly,
PTV voxels around the target area comprised the primarly500

limiting structure, as they imposed a steep dose fall-off to a
maximum dose of 41.5 Gy outside the boost volume. We
relaxed the bounds on surrounding areas inside the PTV us-
ing the graphical tool, which increased V45.3 to 29.5 %. Fur-
thermore, the visualization indicated that both shell structures505

around the PTV were limiting. The respective bounds were
relaxed in some directions while maintaining a steep gradi-
ent towards femural heads and plevic bones, resulting in a
12.8 % increase in the coverage of the boost volume. As a
further trade-off, additional relaxation along the bladder sur-510

face yielded 58.7 % coverage of the boost volume (Fig. 6).
Table II summarizes the relaxation steps including the homo-
geneity index (HI), while Figure III.A.2 shows the DVHs of
the initial and resulting dose distributions.

III.B. Meningioma515

The initial solution for scenario 2 led to 88.7 % coverage,
while both OARs received a maximum dose of 7 Gy. Hence
the goal was to improve the coverage to the complete PTV
(SCO step on all PTV voxels). As a first trade-off we al-
lowed more dose through the nasal and ear cavities by relaxing520

the outer shell (SHELL2) upper bound in these areas. Figure
7a illustrates limiting areas on the respective iso-dose surface
while Figure 7b highlights the voxels selected for relaxation
from 4 Gy to 5.5− 6.0 Gy and the resulting dose fingers. The
relaxation allowed for an additional 3.7 % coverage while the525

dose in the OARs did not change substantially. A similar re-
laxation of the inner shell (SHELL1) from 10 to 12 Gy lead
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Figure 5 DVHs summarizing the dose distributions for the different VOIs and the respective subvolumes for the initial optimization (solid) and after local
PTV and bladder relaxation (dashed), respectively. (a) DVHs for PTV, rectum, and bladder. (b) DVHs for the entire rectum and for its target and non-target
subvolumes. (c) DVHs for the entire PTV and for its relaxed and non-relaxed subvolumes. (d) DVHs for the entire bladder and for its relaxed and non-relaxed
subvolumes. The DVHs illustrate that only the dose bounds in the selected subvolumes are affected by the relaxation steps.

Table I Summary of the actual dose statistics after local trade-off steps for selective sparing of the rectum. The average runtime is denoted by topt. Note that
the initial step represents the baseline for interactive planning.

step PTV rectum bladder
CO (%) min (Gy) max (Gy) V33 (%) max (Gy) V33 (%) max (Gy) topt (s)

initial 99.4 33.99 41.50 11.2 37.00 0.0 33.00 -
SSP rectum 99.4 33.99 41.50 11.1 37.00 0.0 33.00 107
relax bladder 99.5 34.29 41.50 5.5 36.77 2.2 33.00 60
relax PTV 98.0 34.17 41.50 2.3 35.27 2.2 35.00 61

(a) (b) (c)

Figure 6 (a) The desired boost volume (wire-frame) and the final 45.3 Gy
iso-dose surface. Axial (b) and sagittal slices (c) showing the 20, 33, 41.5
and 45.3 Gy iso-dose lines before (solid) and after (dashed) relaxation. The
dashed black contour in the axial slice illustrates the relaxation of the shell
towards the sides.
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DVHs for boost volume, PTV,
rectum, bladder for the initial distribution (solid) and the dose distributions

after completion of all local relaxation steps (dashed).

to an additional 0.7 % coverage. Furthermore, the dose con-
straints implied by optic nerve and brainstem were identified
as limiting on the respective bounds surfaces. Therefore, a530

small region on the surface of the optic nerve was considered
for relaxation from 7.0 Gy to 8.0 Gy upper bound. The cover-
age increased by another 0.3 % while only the selected region
of the optic nerve got higher doses. Finally, relaxing the dose
along the surface of the brainstem in a similar fashion from 7.0535

(a) (b)

Figure 7 Voxels of SHELL2 represented by spheres where the dose bounds
were maintained and by boxes, where the dose bounds were relaxed, and
the 4 Gy iso-dose surface: (a) before relaxation SHELL2 contains the iso-
dose surface, but some highlighted areas indicate that bounds are limiting the
optimization of coverage; (b) after successively relaxing the bounds towards
the nasal cavity dose fingers extend in this direction only.

Gy to 9.0 Gy yielded another 1.2 % increase in PTV coverage.
Figure 8 illustrates that the low dose iso-doses only changes
in regions that had been relaxed, while the coverage increases
for the whole PTV. This is also summarized in Figure 9, which
shows that none of the regions that were not relaxed exceeds540

the original bounds. The results are summarized in Table III,
including the conformality index (CI).

IV. DISCUSSION

It is important to note that multi-criteria optimization can-
not change the physical limits of the dose distribution achiev-545

able with a given treatment system. However, it is an effec-
tive tool for selecting the dose distribution that represents the
best trade-off with respect to the different clinical goals. We
have presented an approach that can be used to study how



8

Table II Summary of the actual dose statistics after steps to increase coverage to the boost volume inside the PTV. The average runtime is denoted by topt. Note
that the initial step represents the baseline for interactive planning.

step boost PTV SHELL1 SHELL2 bladder
CO (%) min (Gy) max(Gy) HI max(Gy) max (Gy) V33 (%) max (Gy) topt (s)

initial 0.0 34.50 41.50 1.22 35.00 20.00 2.2 35.00 -
SCO boost 0.0 38.60 44.25 1.29 35.00 20.00 2.2 35.00 230
relax PTV 29.5 39.52 47.30 1.38 35.00 20.00 2.1 35.00 24
relax shells 42.3 41.26 47.30 1.38 37.00 22.50 2.8 35.00 12
relax bladder 58.7 42.71 47.30 1.37 37.00 22.50 4.0 35.00 117

Table III Summary of the actual dose statistics after trade-off steps to improve coverage of the PTV. The average runtime is denoted by topt. Note that the
initial step represents the baseline for interactive planning.

step PTV optic nerve brainstem
CO (%) CI min (Gy) V7 (%) max (Gy) V7 (%) max (Gy) topt (s)

initial 88.7 1.08 7.80 0.0 7.00 0.0 7.00 -
OCO PTV 88.7 1.08 7.80 0.0 7.00 0.0 7.00 291
relax SHELL2 92.2 1.10 7.88 0.0 7.00 0.0 7.00 52
relax SHELL1 92.9 1.11 7.75 0.0 7.00 0.0 7.00 29
relax optic nerve 93.2 1.12 8.23 2.8 8.00 0.0 7.00 54
relax brainstem 94.4 1.13 8.35 2.7 8.00 0.8 8.74 47

(a) (b)

Figure 8 Axial (a) and sagittal (b) slices showing the 4.0 Gy, 7.0 Gy, 10.0
Gy, and 18.0 Gy iso-dose lines before (solid) and after (dashed) all relax-
ations.

the flexibility of modern treatment devices can be used to550

spatially shift the dose in the target region. Particularly, the
method maintains the dose distribution and highlights spatial
constraints, hence allowing for a systematic search for poten-
tial trade-offs.

Our objective is to shape the dose-distribution, which is de-555

fined by the dose in each voxel. Therefore, a single voxel rep-
resents the smallest unit of control over the dose distribution
and its dose forms a single criterion. Considering the dose of
each voxel separately would be possible but often impractical
and the graphical tool allows grouping of voxels for SCO, SSP560

and relaxation. Note that the actual criteria considered remain
the doses of the individual voxels, which define the spatial
dose distribution. To preserve the dose distribution, each vox-
els dose is maintained by a constraint after optimization.

While the improvement with respect to the objective is lim-565

ited by constraints, it is not given that relaxing any specific
constraint highlighted in the graphical tool will result in an
improvement. However, these constraints present candidates

for relaxation, i.e., relaxing at least one binding constraint is
a necessary precondition for improvements in the objective570

and if all binding constraints are relaxed the objective will im-
prove. This illustrates how the method guides the planners
search and at the same time depends on the planners deci-
sions: if certain constraints are deemed non-relaxable because
the related criteria are crucial the method shows that further575

progress cannot be expected. This is important information,
as it terminates the search.

Relaxation may add more slack than necessary for some
voxels, which can be recovered by optimizing the dose of
the relaxed voxels towards the previous value. Moreover, re-580

laxation may allow for improvements with respect to other
criteria and it is necessary to repeat all optimization steps
without relaxation, i.e., in a lexicographic manner, to re-
establish Pareto-efficiency. The lexicographic approach is
typically considered an a-priori method, i.e., a preference rela-585

tion among the criteria is defined before starting optimization.
However, in our interactive approach we essentially allow the
planner to change the preference and restart the process to es-
tablish Pareto-efficiency. At the moment this is done after a
number of steps and from within the graphical tool and in our590

experience the effect on the solution is usually small.
We have demonstrated the method in the context of a

prostate scenario and a meningioma scenario. While the
optimal treatment planning approach for prostate cancer is
the subject of ongoing research, stereotactic body radio-595

therapy and inhomogeneous dose distributions have been
considered21,22,29–31. Moreover, sparing of the OAR, partic-
ularly the rectal wall, is an important goal28. Our results il-
lustrate that constraints on the dose distribution which limit
local sparing can be identified and systematically relaxed in600

regions where a trade-off is clinically desirable. We demon-
strated that it is possible to selectively spare one region, i.e.,
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Figure 9 DVHs summarizing the dose distributions for the different VOIs and the respective subvolumes for the initial optimization (solid) and after all
relaxations (dashed), respectively. (a) DVHs for the entire PTV and for its target and non-target subvolumes. (b) DVHs for the entire optic nerve and for its
relaxed and non-relaxed subvolumes. (c) DVHs for the entire brainstem and for its relaxed and non-relaxed subvolumes. (d) DVHs for the entire SHELL2 and
for its relaxed and non-relaxed subvolumes. The DVHs illustrate that only the dose bounds in the selected subvolumes are affected by the relaxation steps.

the dose in the rectal wall was effectively balanced against the
dose in a small region on the bladder surface and in the adja-
cent prostate region. Likewise, we also demonstrated that it605

is possible to selectively cover a region by studying in which
local regions to relax the dose constraints in order to shape a
boost volume inside the prostate. A similar trade-off between
PTV coverage and OAR sparing is typical for planning treat-
ments close to the optic nerves24,25, where the planner is fre-610

quently willing to compromise coverage locally, but not glob-
ally. Again, we illustrated for scenario 2 that the dose dis-
tribution can be locally modified based on information where
constraints limit progress and an assessment of whether relax-
ing these constraints is clinically acceptable.615

Conventionally, the dose distribution is considered by
studying DVHs. The main limitation of this approach is the
neglect of spatial information. Recently, more complex spa-
tial dose distributions have been studied in the context of
dose painting. Typically, the objective function for treatment620

plan optimization defines different target doses for specific
regions or individual voxels for dose-painting by contours
(DPBC)32,33 and dose-painting by numbers (DPBN)20,34–36,
respectively. However, this does not solve the inherent conflict
among the related goals and the resulting dose-distribution625

will typically not fulfill all goals simultaneously. Obviously,
changing the importance of certain regions, e.g., by increasing
the respective coefficients in the objective function or by mod-
ifying the desired dose, will change the dose distribution2,3.
Generally, these changes implicitly affect the global dose dis-630

tribution, e.g., it has been reported that a higher boost in
one region comes at the cost of less dose increase in other
regions32.

In contrast, our method allows to maintain the dose distri-
bution. Conceptually, it is closer to DPBC, although we do635

not consider contours explicitly. Instead, the possibility to
shape the iso-dose-surfaces is studied, i.e., there is no need
to define a set of auxiliary structures. This also extends cur-
rent multi-criteria approaches, which typically consider crite-
ria on a VOI level. In fact, considering a large number of fine640

grained dose criteria would be a challenge for methods that
compute the Pareto-frontier upfront and would have to deal
with a large search space. Our hypothesis is that starting from
a reasonable dose distribution the human planner will be able
to identify where the iso-dose surface needs to be shaped, i.e.,645

solutions which prioritize other criteria will not be explored.
Clearly, the interactive approach we propose depends on a fast
optimization, which is currently below 1 minute for typical re-
laxation steps.

V. CONCLUSION650

The presented approach allows to systematically explore
trade-offs with respect to the spatial dose distribution. Start-
ing from an initial dose distribution a graphical tool allows to
locally modify the shape of one iso-dose surface. The desired
modification is mapped to either of two optimization steps:655

selective coverage and selective sparing. Constraints maintain
the dose distribution everywhere else. Regions where these
constraints limit the optimization are visualized to the planner
and can be explicitly relaxed to realize the trade-off. The ex-
amples illustrate that the method can be used to fine-tune the660

balance between OAR sparing and PTV coverage.
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